
Mr. V.V.Prathap et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 3(Version 5), March 2014, pp.75-80

www.ijera.com 75 | P a g e

Detecting Malware Intrusion in Network Environment

Mr. V.V.Prathap
1
, Mrs.D.Saveetha

2

1, 2
 SRM University

ABSTRACT
Over a Past Few YearsCloud security is one of most important issues that has attracted a lot of research and

development,Especially Attackers can Find explore vulnerabilities of a cloud system and compromise virtual

machines to deploy further large-scale Distributed Denial-of-Service (DDoS).As DDoS Attacks Usually

Involves Early Stage Actions the Detection of Zombie Exploration Attacks is Extremely Difficult Because of

Cloud Users May Install Vulnerable Applications on Their Virtual Machines .To Prevent this Condition we

Propose a Multi-Phase ,Distributed Vulnerability Detection Measurement and Counter Measure Selection

Mechanism called NICE Implementation. This Model is built on Attack Graph Based Analytical Models and

Re-Configurable Virtual Network Based Counter Measures. A Scenario Attack Graph Technique is Used to

Prevent the Attacker while he wants to Enter to Other User/Server in the Network. As NICE Proposes Three

Models, Where Scenario Attack Graph is Proved asPreferred Model.

INDEX TERMS: Attack Graph, Cloud Computing, Intrusion Detection, Network Security, Zombie Detection

I. INTRODUCTION
A recent Cloud Security Alliance (CSA)

survey shows that among all security issues, abuse

and nefarious use of cloud computing is considered

as the top security threat, in which attackers can

exploit vulnerabilities in clouds and utilize cloud

system resources to deploy attacks. In traditional data

centres, where system administrators have full

control over the host machines, vulnerabilities can be

detected and patched by the system administrator in a

centralized manner.

However, patching known security holes in

cloud data centres, where cloud users usually have

the privilege to control softwareinstalled on their

managed VMs, may not work effectively and can

violate the Service Level Agreement (SLA).

Furthermore, cloud users can install vulnerable

software on their VMs, which essentially contributes

to loopholes in cloud security. The challenge is to

establish an effective vulnerability/attack detection

and response system for accurately identifying

attacks and minimizing the impact of security breach

to cloud users.

To establish a defence-in-depth Intrusion

Detection Framework, We Propose NICE. In this

article, we propose NICE (Network Intrusion

detection and Countermeasure Selection in virtual

network systems) to establish a defense-in-depth

intrusion detection framework. For better attack

detection, NICE incorporates attack graph analytical

procedures into the intrusion detection processes. We

must note that the design of NICE does not intend to

improve any of the existing intrusion detection

algorithms; indeed, NICE employs a reconfigurable

virtual networking approach to detect and counter the

attempts to compromise VMs, thus preventing

zombie VMs

Actually, NICE includes two main phases:

(1) deploy a lightweight mirroring based network

intrusion detection agent (NICE-A) on each cloud

server to capture and analyse cloud traffic. A NICE-

A periodically scans the virtual systemvulnerabilities

within a cloud server to establish Scenario Attack

Graph (SAGs), and then based on the severity of

identified vulnerability towards the collaborative

attack goals, NICE will decide whether or not to put a

VM in network inspection state. (2) Once a VM

enters inspection state, Deep Packet Inspection (DPI)

is applied, and/or virtual network reconfigurations

can be deployed to the inspecting VM to make the

potential attack behaviours prominent.

II. NICE MODELS
Basically,NICE Consists of Three Models

2.1 Threat Model

The attacker‟s primary goal is to exploit

vulnerable VMs and compromise them as zombies.

Our protection model focuses on virtual-network-

based attack detection and reconfiguration solutions

to improve the resiliency to zombie explorations. Our

work does not involve host-based IDS and does not

address how to handle encrypted traffic for attack

detections. Our proposed solution can be deployed in

an Infrastructure-as-a-Service (IaaS) cloud

networking system, and we assume that the Cloud

Service Provider (CSP) is benign. We also assume

that cloud service users are free to install whatever

operating systems or applications they want, even if

such action may introduce vulnerabilities to their

RESEARCH ARTICLE OPEN ACCESS

Mr. V.V.Prathap et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 3(Version 5), March 2014, pp.75-80

www.ijera.com 76 | P a g e

controlled VMs. Physical security of cloud server is

out of scope of this paper. We assume that the

hypervisor is secure and free of any vulnerability.

2.2 Attack Graph Model

An attack graph is a modelling tool to

illustrate all possible multi-stage, multi-host attack

paths that are crucial to understand threats and then to

decide appropriate countermeasures.Since the attack

graph provides details of all known vulnerabilities in

the system and the connectivity information, we get a

whole picture of current security situation of the

system where we can predict the possible threats and

attacks by correlating detected events or activities. If

an event is recognized as a potential attack, we can

apply specific countermeasures to mitigate its impact

or take actions to prevent it from contaminating the

cloud system.

Definition 1(Scenario Attack Graph). An Scenario

Attack Graph is a tuple SAG=(V, E), where

1. V = NC∪ND∪NR denotes a set of vertices that

include three types namely conjunction node NC to

represent exploit, disjunction node ND to denote

result of exploit, and root node NR for showing initial

step of an attack scenario.

2. E = Epre ∪Epost denotes the set of directed edges.

An edge e ∈Epre ⊆ND × NC represents that NDmust

be satisfied to achieve NC. An edge e ∈Epost ⊆NC ×

ND means that the consequence shown by NDcan be

obtained if NC is satisfied. Node vc ∈NC is defined

as a three tuple(Hosts, vul, alert) representing a set of

IP addresses,vulnerability information such as CVE

[23], and alertsrelated to vc, respectively. ND

behaves like a logical ORoperation and contains

details of the results of actions.NR represents the root

node of the scenario attack graph.

Definition 2(Alert Correlation Graph). An ACG is a

three tuple ACG = (A,E, P), where

1. A is a set of aggregated alerts. An alert a ∈A is a

data structure (src, dst, cls, ts) representing source

IP address, destination IP address, type of the alert,

and timestamp of the alert respectively.

2. Each alert a maps to a pair of vertices (vc, vd) in

SAG using map(a) function, i.e., map(a) : a _→{(vc,

vd)|(a.src ∈vc.Hosts) ∧(a.dst ∈vd.Hosts) ∧

(a.cls = vc.vul)}.

3. E is a set of directed edges representing

correlation between two alerts (a, a_) if criteria

below satisfied:

i. (a.ts < a_.ts) ∧(a_.ts − a.ts < threshold)

ii. ∃(vd, vc) ∈Epre : (a.dst ∈vd.Hosts ∧a_.src

∈vc.Hosts)

4. P is set of paths in ACG. A path Si ⊂P is a set of

related alerts in chronological order. We assume that

A contains aggregated alerts ratherthan raw alerts.

Raw alerts having same source anddestination IP

addresses, attack type and timestampwithin a

specified window are aggregated as Meta Alerts.

III. Related Theory
3.1 Existing Model

In the Existing System, When an Attacker

Attacks the User/Server in the Network which are

especially Infrastructure-as-a-Service[IaaS] based

Servers, detection of effected Servers are Extremely

Difficult because of cloud Users may install multiple

Types of Software in the Server with their User

Account.Existing work generally focuses on

measuring individual vulnerabilities instead of

measuring their combined effects.

3.2 Proposed Model

In the Proposed System, We propose

Network Intrusion detection and Countermeasure

Selection to establish a defense-in-depth intrusion

detection framework for better attack detection,

Network Intrusion detection and Countermeasure

Selection incorporates attack graph analytical

procedures into the intrusion detection processes.

When an Attacker Attacks the Server by

using a User Account, Attacker can Deploy Multiple

Levels of Malwares to the Server, If and only if he

can Access to the Server, but in Existing System its

Hard to Detect the Attacker because of Server Cloud

Service . While in Proposed, When an Attacker

Attacks the Server using User Account, the Attack

Analyzer can Detect the Attacker and Send the

Warning to Administrator that User[Attacked by the

Zombie] try to Access to Other Users Account to

Deploy the Multiple Levels of Malware and Admin

waits for Maximum Attempts and then Admin Blocks

him Permanently using Scenario Attack Graph.

Fig 1 : Designed NICE Architecture

The major functions of NICE system are

performed by attack analyzer, which includes

procedures such as attack graph construction and

update, alert correlation and countermeasure

selection. The process of constructing and utilizing

the Scenario Attack Graph (SAG) consists of three

Mr. V.V.Prathap et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 3(Version 5), March 2014, pp.75-80

www.ijera.com 77 | P a g e

phases: information gathering, attack graph

construction, and potential exploit path analysis.

With this information, attack paths can be model

using SAG. Each node in the attack graph represents

an exploit by the attacker. Each path from an initial

node to a goal node represents a successful attack.

Algorithm ::

Alert Correlation

Require: alert ac, SAG, ACG

1: if (ac is a new alert) then

2: create node ac in ACG

3: n1 ← vc ∈map(ac)

4: for all n2 ∈parent(n1) do

5: create edge (n2.alert, ac)

6: for all Si containing a do

7: if a is the last element in Si then

8: append ac to Si

9: else

10: create path Si+1 = {subset(Si, a), ac}

11: end if

12: end for

13: add ac to n1.alert

14: end for

15: end if

16: return S

Above method for utilizing SAG and ACG

together so as to predict an attacker‟s behaviour.

Alert Correlation algorithm is followed for every

alert detected and returns one or more paths Si.For

every alert ac that is received from the IDS, it is

added to ACG if it does not exist. For thisnew alert

ac, the corresponding vertex in the SAG is found by

using function map.

Fig 2 : Counter-Measure Model

Algorithm presents how to select the optimal

countermeasure for a given attack scenario. Input to

the algorithm is an alert, attack graph G, and a pool

of countermeasures CM. The algorithm starts by

electing the node vAlert that corresponds to the alert

generated by a NICE-A. Before selecting the

countermeasure, we count the distance of vAlert to

the target node. If the distance is greater than a

threshold value, we do not perform countermeasure

selection but update the ACG to keep track of alerts

in the system.

IV. Step-by-Step Procedure to Prevent

Attack
The below Figures Shows Every Moment of

Application while Running It gives the clear

elaborated of application. It will be useful for the new

user to understand for the future steps.

Intrusion Detection Model:

Fig3 : Registration Process

In above figure describes registration

process where user is provides his own details for

registering and he is will be getting login on

successful registration or else if he fails to provide

any of the details he will not be allowed to register

thereby he is not allowed to login

Attack Graph Model:

Fig 4 : User Profile

After successful login he is allowed to enter

the application profile, from there onwards what are

the information he may want to get he is simply

access from the application

Mr. V.V.Prathap et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 3(Version 5), March 2014, pp.75-80

www.ijera.com 78 | P a g e

Upload Information

Fig 5 : Uploading a File After Login

In Above Figure describes that a Registered

User can Access his own Account by Uploading any

type of files, he can only able to have the delete

Option .

Fig 6 : All Files Option

In Above Figure describes the User can

check the All Files Available in his Cloud Server by

clicking on “All files” Option in his Account

Fig 7 :Preventing the Deletion

In Above Figure describes, if User tries to

Delete a file which is Available in Cloud Server it

shows “Sorry You Cannot Delete the

Files!!!!”because the User will having only “Read-

Write-Remove[RWR]” only to his Account not to

Remaining Account/Files

Fig 8 :: Selection of a Particular File/Format

In Above Figure describes if User having „n‟

number of files and he wants to check a particular

file/Format, he can access that File in the Search

Option by Typing the File name/Format Type he

wants

Fig 9 : Providing a Unique ID

In Above Figure describes that for every

login User having an Unique Secure ID in the

Application, for the Security Reasons and ID is

useful when User request to Administrator to Delete

a File, User wants to Submit Secure ID with the

Message which is showing in above figure

Fig 10 : Admin Login Page

In Above Figure describes the Administrator

Login Page

Fig 11 :Admin Index

Mr. V.V.Prathap et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 3(Version 5), March 2014, pp.75-80

www.ijera.com 79 | P a g e

After Login, Administrator Having an 7

Options Index of his Cloud Server and Virtual

Machine, Counter-Measure, Graph

Fig 12 : Accessing the Details

In Above Figure describes the

Administrator, Access to Cloudserver1 Details which

shows how many Users are Logged in

Fig 13 : Cloud Server Files

In Above Figure describes the

Administrator, having an Access to the Particular

Users data in the Cloud server, if Admin tries to

delete a File in the User Account, he can‟t able to

delete a file without “Security Key”

Fig 14 : Security Key Request

In Above Figure describes the

Administrator, tries to delete a File in the User

Account only by Entering “Security Key” which is

generated when User Login ,which is shown in Fig 9

Fig 15 :Admin Monitoring Details

In Above Figure describes the

Administrator, Access to Counter-Measurewhich is

in that a User1[Attacker] who tries to delete files of

other User2, Admin can see the how many Attempts

that Attacker made to delete Files of other User.

Admin can also Block the Attacked User who tries to

delete other User

Fig 16 :Access to VM

In Above Figure describes the Administrator

Access to Virtual Machine Allocating Storage date of

Virtual Machine

Fig 17: VM Graph

In Above Figure describes the Administrator

having Access to Virtual Machine Graph which

shows Data Usage of Particular Virtual Machine in

Cloud Server

V. CONCLUSION AND FUTURE

WORK
In this paper, we presented NICE, which is

proposed to detect and mitigate collaborative attacks

Mr. V.V.Prathap et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 3(Version 5), March 2014, pp.75-80

www.ijera.com 80 | P a g e

in the cloud virtual networking environment. NICE

utilizes the attack graph model to conduct attack

detection and prediction. The proposed solution

investigates how to use the programmability of

software switches based solutions to improve the

detection accuracy and defeat victim exploitation

phases of collaborative attacks. The system

performance evaluation demonstrates the feasibility

of NICE and shows that the proposed solution can

significantly reduce the risk of the cloud system from

being exploited and abused by internal and external

attackers. NICE only investigates the network IDS

approach to counter zombie explorative attacks.

In order to improve the detection accuracy,

host-based IDS solutions are needed to be

incorporated and to cover the whole\ spectrum of IDS

in the cloud system. This should be investigated in

the future work. Additionally, as indicatedin the

paper, we will investigate the scalability of the

proposed NICE solution by investigating the

decentralized network control and attack analysis

model based on current study.

REFERENCES
[1] Cloud Security Alliance “Top threats to

cloud computing 1.0, https://cloudsecurityal

liance.org/topthreats/csathreats.v1.0.pdf,

March 2010.

[2] M. Armbrust, A. Fox, R. Griffith, A. D.

Joseph, R. Katz, A. Konwinski, G. Lee, D.

Patterson, A. Rabkin, I. Stoica, and M.

Zaharia, “A view of cloud computing,”

ACM Commun., vol. 53, no. 4, pp.50–58,

Apr. 2010.

[3] B. Joshi, A. Vijayan, and B. Joshi,

“Securing cloud computing environment

against DDoS attacks,” IEEE Int’l Conf.

Computer Communication and Informatics

(ICCCI ’12), Jan. 2012.

[4] H. Takabi, J. B. Joshi, and G. Ahn,

“Security and privacy challenges in cloud

computing environments,” IEEE Security &

Privacy, vol. 8, no. 6, pp. 24–31, Dec. 2010.

[5] “Open vSwitch project,”

http://openvswitch.org, May 2012.

[6] Z. Duan, P. Chen, F. Sanchez, Y. Dong, M.

Stephenson, and J. Barker, “Detecting spam

zombies by monitoring outgoing messages,”

IEEE Trans. Dependable and Secure

Computing, vol. 9, no. 2, pp. 198–210, Apr.

2012.

[7] G. Gu, P. Porras, V. Yegneswaran, M. Fong,

and W. Lee, “BotHunter:detecting malware

infection through IDS-driven dialog

correlation,” Proc. of 16th USENIX Security

Symp. (SS ’07), pp. 12:1–12:16, Aug. 2007.

[8] G. Gu, J. Zhang, and W. Lee, “BotSniffer:

detecting botnet command and control

channels in network traffic,” Proc. of 15th

Ann.Network and Distributed Sytem Security

Symp. (NDSS ’08), Feb. 2008.

[9] O. Sheyner, J. Haines, S. Jha, R. Lippmann,

and J. M. Wing, “Automated generation and

analysis of attack graphs,” Proc. IEEE

Symp. on Security and Privacy, 2002, pp.

273–284.

[10] “NuSMV: A new symbolic model checker,”

http://afrodite.itc.it: 1024/∼nusmv. Aug.

2012.

[11] S. H. Ahmadinejad, S. Jalili, and M. Abadi,

“A hybrid model for correlating alerts of

known and unknown attack scenarios and

updating attack graphs,” Computer

Networks, vol. 55, no. 9, pp. 2221–2240,

Jun. 2011.

